本站分享:AI、大数据、数据分析师培训认证考试,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训

数据分析师面试_业务分析师_数据分析场景如何结合企业业务分析

数据分析师 cdadata 3601℃

数据分析师面试企业的数据分析场景应该怎么去分析?怎么结合企业业务

问题中说的是学生,但学生和没有数据分析经验的人,想要做数据分析的工作,都可以看看下面的内容。

如何在笔试/面试中回答数据分析场景相关的问题?分三步走:
第一步:明确你遇到的场景类型
企业数据分析场景可分为以下几种:
经营数据分析:指收入、销量等企业经营活动相关的数据分析;
销售数据分析:指销售收入、销售额、销售单产等与销售活动直接相关的数据分析,与经营分析的区别是销售分析粒度更细,频次更密,要求速度更快;
客户数据分析:即CRM分析,指客户购买额、购买频次、购买偏好等客户产生的相关数据的分析;
营销/市场数据分析:指企业营销/市场活动的投放、反馈、效果相关数据的分析,运营分析可归入这一类,也可归入产品类;
产品数据分析:单个产品的数据分析,包括实物产品和服务产品(互联网产品也归入服务产品类);
财务数据分析:这个好理解,不解释了(其实是因为我自己不了解……不敢误导)。
其他数据分析:人力资源数据分析(比如考勤率)等等不能归入以上类别的。

确定场景后,进入第二步:明确分析目标
对于不同的场景,分析目标是不一致的:
经营数据分析:监控企业的运行情况,目标是发现企业经营活动中的问题,主要关注点是销量/销售额总体时序变化、地区分布、总体及单个点变化原因;
销售数据分析:目标是保证完成销售任务,监测销售效率低的原因,提出解决办法,主要关注时序进度、落后原因、销售单产情况等;
客户数据分析:目标是深入理解客户,典型方法是RFM模型;
营销/市场数据分析:目标是了解投放效果,优化投放计划,提升投放效率,关注点主要集中在ROI相关的指标;
产品数据分析:综合了前边几类分析的内容,分析目标则集中在某个产品上;
财务数据分析、其他数据分析:略。

目标明确以后,最后一步:搭建分析体系
每一个场景里的内容看似复杂,但记住两个核心,即可推导出所有的分析点:
核心一:绝大多数分析都是针对人(内部人员和客户)、财(收入,支出)、物(产品,服务)三个对象进行的,所有的基础分析指标可由单个对象或对象间的组合推导出来。
举例:开发新客户的电话销售团队分析指标中,最重要的指标是:团队销售额(财)、团队新增客户数(人)、人均销售额(财/人)、重点产品销售额(物+财)、重点产品销售单数(物)、任务完成率(财-实际发生/财-预计)等。
核心二:做分析时处理指标记住八个字:变化、分布、对比、预测
变化:指标随时间的变动,表现为增幅(同比、环比等);
分布:指标在不同层次上的表现,包括地域分布(省、市、区县、店/网点)、用户群分布(年龄、性别、职业等)、产品分布(如动感地带和全球通)等;
对比:包括内部对比和外部对比,内部对比包括团队对比(团队A与B的单产对比、销量对比等)、产品线对比(动感地带和全球通的ARPU、用户数、收入对比);外部对比主要是与市场环境和竞争者对比;这一部分和分布有重叠的地方,但分布更多用于找出好或坏的地方,而对比更偏重于找到好或坏的原因;
预测:根据现有情况,估计下个分析时段的指标值。
将两个核心的内容叠加到一起,分析体系基本就建立了。

不过说实话,各个类型的数据分析远非这几句话所能概括,每个类型都能讲一大篇……这段答案主要目的在于启发题主和与题主有相同需求的人建立一套系统的思路,忽悠一下面试官还是有作用的。如果对其中某个类型有深入了解的需求,欢迎探讨。

作者:陈丹奕
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

转载请注明:数据分析 » 数据分析师面试_业务分析师_数据分析场景如何结合企业业务分析

喜欢 (2)or分享 (0)