本站分享:AI、大数据、数据分析师培训认证考试,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训

数据分析师为何有专业要求

数据分析师 shujufenxi 2997℃

数据分析师为何有专业要求_数据分析师培训

数据分析师对专业要求一般为:统计学,经济学,计量经济学,人口学,社会学,心理学,市场营销,企业管理。

在这些专业中,最主要的是有一个共性——统计。因此,对于统计概率掌握得比较好的都可以从事数据分析的工作。由于国内数据分析行业发展还不够成熟,统计学出身的学生其实真正工作中做数据分析的非常少,因为企业的需求是最近几年才上升的,所以对于很多非统计专业的人来说,其实也可以进入到这样一个行业。

总结了目前大多数企业的岗位要求。要求几乎雷同,同时也说明这个职业的互通性很强,说白了就是换个行业都可以在职场上存活下来;一般需要以下几个要求:
1、统计概率基础;
2、商业数据敏感度;
3、基本工具(EXCEL、SAS、SPSS、SQL等);
4、数据分析建模,编程能力;
5、经验;

统计其实是属于数据分析的一部分,数据分析包括统计分析和数据挖掘。所以统计是必须要掌握的一部分,一般对于一名数据分析师必须要掌握的知识点是“描述性分析”,“假设检验”,“参数估计”,“统计制图”,“回归分析”。企业工作中,可以根据不同的要求掌握相应的知识。

商业数据敏感度是作为一名数据分析师的前提,对数据排斥的人当然不适合从事这个行业。

基本工具是载体,唯有驾驭工具,才能驾驭数据分析。

经验是非必要技能,数据分析是为业务服务的,最终落地要解决业务问题。

可以总结如下:

一、自身检查:是否适合数据分析岗位。

什么样的人适合做数据分析师?

  1. 对数据敏感:对数字不恐惧,经常关注行业数据动态,能够从数据变化中自行感觉出实务背后的原因规律。
  2. 耐得住性子和寂寞:耐心,就不用多说了。寂寞,与数据打交道需要你爱上数据而不是排斥数据。
  3. 自学能力强:在数据分析的过程中需要经常自行研究学习一些新的思路和方法,不断修正,不断更新。

二、 从入门到精通系统学习

  1. 统计概率基础:数据分析行业分析,数据挖掘经典流程,数据的描述性分析,数据的推断性分析,方差分析,回归分析,多元统计等系列理论课程,唯有掌握原理,方能驾驭工具。
  2. 数据分析工具学习:根据等级的要求,一般软件在学术界和企业界的应用广泛程度为,学术界 :STATA >R >  Matlab> SPSS >SAS  ; 商业界:SPSS>R>SAS > MATLAB 。上手难度:SAS>R>MATLAB>STATA>SPSS>EXCEL工具的选择不在于多,而在于跟具体问题相结合,在学习的过程中可以选择1-2门的工具进行熟练使用。参考各大数据分析工具的区别。
  3. 数据分析建模:利用工具进行数据分析模型、数据挖掘算法建模运用,常用的数据分析方法有(回归分析法、主成分分析法、典型相关分析、因子分析法、判别分析法、聚类分析法、结构方程、Logistic模型等),常用的数据挖掘算法有(时间序列、Panel Data、关联法则、神经网络、决策树、遗传算法)以及可视化技术。

4. 以上三部分皆为数据分析硬性技术,要想熟能生巧需要经常在学习和工作中运用,不断改善,不断优化模型,将技术与具体业务结合起来,经过长时间的积累方能成为高级数据分析师

转载请注明:数据分析 » 数据分析师为何有专业要求

喜欢 (0)or分享 (0)