如何用格兰杰检验、协整对数据进行分析
关键词:格兰杰因果检验 协整,格兰杰因果检验分析,格兰杰检验结果分析 格兰杰因果检验数据
协整概念:非平稳的时间序列,由x、y变量构成的线性组合也可能是平稳的,这是称变量x、y是协整的。
为什么要做协整检验?经典模型是建立在平稳数据之上,当数据为非平稳序列,模型很可能出现伪(虚假)回归。协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。协整检验是用以检验非平稳时间序列是否存在长期稳定协整关系。
——————————————————————————————
格兰杰因果关系检验:在经济学上确定一个变量的变化是否是另一个变量变化的原因,一般用格兰杰因果关系(Granger Test of Causality)检验。Granger检验首先必须证明随机变量是平稳序列,因为其中用到F统计检验,而F统计量要求序列平稳,所以平稳性是Granger的前提(也就是说:序列平稳=》直接做granger检验)。
注:
1.格兰杰(Granger)因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
2.格兰杰因果检验对滞后阶数非常敏感,因此检验之前首先确定最优滞后阶数。通常依据AIC和SIC准则。
——————————————————————————————
关于格兰杰、协整等的操作步骤:
1、序列的平稳性检验:单位根检验。如果不检验序列的平稳性直接OLS容易导致伪回归。
平稳性检验有3个作用:
1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协整检验。
2)协整检验中要用到每个序列的单整阶数。
3)判断时间序列的数据生成过程。
2、若检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验(平稳是granger的前提)。
3、若检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提:DF或ADF检验),可以进行协整检验,确定变量之间是否具有协整关系。
协整检验主要有EG两步法和JJ检验(jj检验又称johansen检验)
1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性
2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)
4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
注:
1.协整检验不是Granger因果检验的先决条件。很多文献中都将其序列进行ADF检验后,再进行协整检验,最后才进行格兰杰因果检验,请不要误解。只需要进行单位根检验后,证明其为稳定序列就可以进行格兰杰因果检验了。关于单位根检验,clarke1984(人大经济论坛ID)建议采用PP检验,因为PP检验中t统计量的构造相对于ADF检验的统计量更为稳定.
2.单位根、协整检验的进一步解释:
单位根检验是看数据是否平稳,常用于时间序列,比如GDP等,如果不平稳可以进行对数变换或者差分,对数变换有助于消除异方差,然后再看是否平稳,定阶。
协整检验是为了判断有相同趋势的两个甚至多个序列之间是否存在长期均衡关系,对各个序列进行单整检验,对于有相同阶数的两个序列建立模型,在检验此模型的残差是否是平稳的,或者几阶是平稳的(通常不会大于1阶),若残差是平稳的,则两个序列之间存在协整关系,以为着他们是长期均衡的。做此检验的目的是防止伪回归。
当然还有误差修正模型,是对协整检验的补充,前者是两个序列是否有长期关系,或者是检验是否具有短期相关性。
3.单位根检验步骤:
综观各种教科书、文献,包括论坛上学友们的讨论,大家对进行该检验的步骤莫衷一是,现由leilei1149(人大经济论坛ID)归纳如下:
1. 步骤。常用的ADF检验包括三个模型方程。在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。本人用此方法对一个序列进行ADF检验,得出平稳序列的结论,但是:
(1)该序列确实存在趋势,那到底是那种过程;
(2)对该序列与一个一阶单整序列进行协整检验,居然得出存在协整关系的结论。
还有的认为先对序列进行观察,再选择相应的ADF检验模型,不用对三个模型都进行检验,也不用管模型的参数检验。
也有人认为不是对三种情况都做ADF检验,而是先对有截距项和趋势项的情况,对常系数和趋势项的系数做统计显著性检验,如果系数显著,就以这种情况做ADF检验。
如果某个系数不显著,就去掉系数,换没有系数或常数项的情形,再做ADF检验。
2. 滞后期的选择。Eviews5.0给出了依据AIC和SIC等多种选择标准下的自动选阶,但有时序列的滞后阶很高,这时骑虎拿下啊:到底用不用这么高的滞后阶数,太高的滞后阶会减少自由度的。有的网友认为做经济一般只选1-2阶滞后就可以了,但是,如果按李子奈老师的方法,滞后不同会影响对模型趋势项、截距项的检验,从而影响结论。所以,滞后期应该如何选择。
在变量均非平稳但协整的情况下则可以建立误差修正模型(Error Correction Model, ECM)来研究变量间的关系,由于误差修正项的出现,ECM可以同时研究短期与长期的因果关系;在变量均非平稳且不协整的情况下,则需要在差分的基础上建立VAR模型,但由于差分消除了变量长期上的经济信息,因此此时只可以分析变量间的短期因果关系。
4.数据不是平稳序列是不可以用格兰杰因果检验的,许多人并没有注意这一点。
PS: 非平稳的时间序列在同阶的情况下可以做VAR,也可以做EG两步法,EG两步法和JJ检验的原理不一样。
以下是引用只爱在2008-8-23 17:42:00的发言:
格兰杰因果检验中的滞后阶数怎么确定的?还有作了协整检验了,存在协整关系,怎么写协整方程?
小妤:根据AIC 和SC的值来判断,越小越好。协整方程就是你作协整检验时,作的回归方程,其表达形式和平稳变量作回归的表达形式相同,这个方程叫作长期协整方程,表现的是变量间的长期关系。对长期协整方程中的变量的一阶差分序列作回归,得到短期修正模型,表现变量的短期动态关系。
以下是引用xiaolan91在2008-8-26 10:14:00的发言:
请问如何在EViews5.0中做单位根ADF检验,做一次就可以了吗
小妤:菜单中步骤:1 view—unit root test,出现对话框,默认的选项为变量的原阶序列检验平稳性,确认后,若ADF检验的P值小于0.5,拒绝原假设,说明序列是平稳的,若P值大于0.5,接受原假设,说明序列是非平稳的;2 重复刚才的步骤,view—unit root test,出现对话框,选择1st difference,即对变量的一阶差分序列做平稳性检验,和第一步中的检验标准相同,若P值小于0.5,说明是一阶平稳,若P值大于0.5,则继续进行二阶差分序列的平稳性检验。
转载请注明:数据分析 » 如何用格兰杰检验、协整对数据进行分析_格兰杰因果检验