本站分享:AI、大数据、数据分析师培训认证考试,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训

spss均值t检验_T检验和方差检验_非参数检验汇总

spss培训 cdadata 5678℃

SPSS读书笔记1—均值比较(T检验,方差检验,非参数检验汇总)

关键词:均值t检验,t检验和方差分析,单因素方差分析 t检验,方差不齐 t检验,t检验 方差分析,双样本异方差t检验, spss均值t检验,t检验与方差分析

均值比较
一、T检验
用途:比较两组数据之间的差异
前提:正态性,方差齐次性,独立性
假设:H0: μ0=μ1
H1: μ0≠μ1
SPSS中对应方法:
1、单样本T检验(One-sample Test)
(1)目的:检验单个变量的均值与给定的某个常数是否一致。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
2、独立样本T检验(Indpendent-Samples T Test)
(1)目的:检验两个独立样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
3、配对样本T检验(Paired-Samples T Test)
(1)目的:检验两个配对样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。

二、方差分析
用途:比较多组数据之间的差异
前提:正态性,方差齐次性,独立性
假设:H0: μ0=μ1=……
H1: μ0,μ1,……不全相等
SPSS中对应方法:
1、单因素方差分析(One-way ANOVA)
(1)目的:检验由单一因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进一步使用LSD,Tukey方法检验两两之间的差异。
2、多因素方差分析(Univariate)
(1)目的:检验由多个因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进一步使用LSD,Tukey方法检验两两之间的差异。

三、非参数检验

用途:比较多组数据之间的差异,独立性等

前提:没有严格限制,适用于母体不服从正态分布或分布情况不明时,亦可以适用于离散和连续数据。

SPSS中对应方法:

1、卡方检验(Chi-Square)

(1)目的:检验某个连续变量是否与理论的某种分布相一致;检验某个分类变量出现的概率是否等于给定的概率;检验两个分类变量是否相互独立;检验两种方法的结果是否一致;检验控制某种或某几种分类因素的作用后,另两个分类变量是否相互独立。

(2)特别说明:所有单元格的期望频数均大于5,最小期望频数为23.7。其中独立性,一致性的检验是在列联表中使用卡方检验。

2、单一样本K-S检验(One Sample K-S Test)

(1)目的:检验样本的是否服从某种分布(正态分布,均匀分布,泊松分布,指数分布)

(2)假设:H0: 检验样本的是服从某种分布

(3)判断标准:p>0.05;t<1.98即认为是有服从该分布。

3、两独立样本的检验(Two-Independed-Sample)

(1)方法:Mann-Whitney U(推荐使用),

①目的:检验两组独立样本的是否存在差异性

②假设:H0: 两总体分布中心位置相同
H1: 两总体分布中心位置不同

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

(2)方法:K-S Z检验

①目的:检验两组独立样本是否存在差异性

②假设:H0: 两配对样本是来自相同分布的总体;
H1: 两配对样本是来自不同分布的总体

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

4、多个独立样本的检验(K-Independed-Sample)

(1)方法:Kruskal-Wails,Jonckheere-Terpstra

①目的:检验多组独立样本的是否存在差异性

②假设:H0: μ0=μ1=……
H1: μ0,μ1,……不全相等

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

④特别说明:J-T除了判断差异性,还可以判断出该数据是否存在某种趋势。

5、两配对样本的检验(Two-related-Sample)

(1)方法:Wilcoxon(推荐使用),Sign(不推荐使用)

①目的:检验两组配对样本的是否存在差异性

②假设:H0: 差值的总体中位数Md=0
H1:两总体不同

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

④特别说明:由于Sign检验只利用了每一配对数据那一侧更大,并没有利用大小所包含的信息,因此会丢失原始数据的大量信息会导致错误结论,所以不推荐使用。

(2)方法:McNemar

①目的:检验两组配对样本的是否存在差异性

②假设:H0: 两配对样本来自得两总体的分布无显著差异;
H1: 两配对样本来自得两总体的分布有显著差异

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

④特别说明:适用于二分数据的配对检验

6、多个相关样本的经验(K-related-Sample)

(1)方法:Firedman

①目的:检验多组配对样本的是否存在差异性

②假设:H0: 所有的位置参数都相等

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

(2)方法:Kendall‘s  W检验

①目的:检验评判者的评判标准是否一致

②假设:H0: 评判者的评判标准不一致

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

(3)方法:Cochran’s Q检验

①目的:检验多组配对样本的是否存在差异性

②假设:H0: 各个处理相同

③判断标准:p<0.05;t>1.98即认为是有显著差异的。

④特别说明:适用于二分数据的配对检验

转载请注明:数据分析 » spss均值t检验_T检验和方差检验_非参数检验汇总

喜欢 (7)or分享 (0)