python并行调参——scikit-learn grid_search
关键词:scikit learn,python scikit learn,scikit learn 教程
上篇 应用scikit-learn做文本分类 中以20newsgroups为例讲了如何用三种方法提取训练集=测试集的文本feature,但是
vectorizer取多少个word呢?
预处理时候要过滤掉tf>max_df的words,max_df设多少呢?
tfidftransformer只用tf还是加idf呢?
classifier分类时迭代几次?学习率怎么设?
……
“循环一个个试过来啊”……啊好吧,matlab里就是这么做的……
好在scikit-learn中提供了pipeline(for estimator connection) & grid_search(searching best parameters)进行并行调参。
官网上pipeline 解释如下:
Pipeline can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of steps in processing the data, for example feature selection, normalization and classification. Pipeline serves two purposes here:
Convenience : You only have to call fit and predict once on your data to fit a whole sequence of estimators.
Joint parameter selection : You can grid search over parameters of all estimators in the pipeline at once.
调用方式:
仍以20newsgroups为例,上一篇文章中有讲数据集加载方式,这里不予赘述,
pipeline+gridsearchcv (grid search parameters with cross validation)代码:
1. pipeline定义,输入备选parameter
print '*************************\nFeature Extraction\n*************************' from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV pipeline = Pipeline([ ('vect',CountVectorizer()), ('tfidf',TfidfTransformer()), ('clf',SGDClassifier()), ]); parameters = { 'vect__max_df': (0.5, 0.75), 'vect__max_features': (None, 5000, 10000), 'tfidf__use_idf': (True, False), # 'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (0.00001, 0.000001), # 'clf__penalty': ('l2', 'elasticnet'), 'clf__n_iter': (10, 50), }
2. gridsearch寻找vectorizer词频统计, tfidftransformer特征变换和SGD classifier的最优参数
GridSearchCV 函数定义见官网。
grid_search = GridSearchCV(pipeline,parameters,n_jobs = 1,verbose=1); print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) from time import time t0 = time() grid_search.fit(newsgroup_train.data, newsgroup_train.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_)
结果:
Performing grid search…
(‘pipeline:’, [‘vect’, ‘tfidf’, ‘clf’])
parameters:
{‘clf__alpha’: (1e-05, 1e-06),
‘clf__n_iter’: (10, 50),
‘tfidf__use_idf’: (True, False),
‘vect__max_df’: (0.5, 0.75),
‘vect__max_features’: (None, 5000, 10000)}
Fitting 3 folds for each of 48 candidates, totalling 144 fits
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 1.1s
[Parallel(n_jobs=1)]: Done 50 jobs | elapsed: 1.1min
[Parallel(n_jobs=1)]: Done 144 out of 144 | elapsed: 3.1min finished
done in 189.978s
()
Best score: 0.871
3. 输出最佳参数,在此基础上求最佳结果
from sklearn import metrics best_parameters = dict(); best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name])); pipeline.set_params(clf__alpha = 1e-05, clf__n_iter = 50, tfidf__use_idf = True, vect__max_df = 0.5, vect__max_features = None); pipeline.fit(newsgroup_train.data, newsgroup_train.target); pred = pipeline.predict(newsgroups_test.data) calculate_result(newsgroups_test.target,pred);
结果:
clf__alpha: 1e-05
clf__n_iter: 50
tfidf__use_idf: True
vect__max_df: 0.5
vect__max_features: None
predict info:
precision:0.806
recall:0.805
f1-score:0.804
Other references:
grid search + cross validation
转载请注明:数据分析 » python并行调参—scikit-learn grid_search_scikit learn