本站分享:AI、大数据、数据分析师培训认证考试,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训

方差分析:组间离差平方和组内离差平方的定义是什么?

spss培训 cdadata 19393℃

方差分析:组间离差平方和组内离差平方的定义是什么?

方差分析中组内离差平方和,组间离差平方和的意义 SPSS方差分析

考虑促销方式对地区销售收入的影响。

有如下促销方式:电视广告促销,户外灯箱广告促销,卖场内促销,报纸广告促销..

那么,在进行方差分析时,组内和组间离差平方和分别代表什么实际含义呢?

1. 方差分析的概念

方差分析(ANOVA)又称变异数分析或F检验,其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析和两因素方差分析即配伍组设计的方差分析。

2. 方差分析的基本思想

下面我们用一个简单的例子来说明方差分析的基本思想:

如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下,

患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11

健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87

问该地克山病患者与健康人的血磷值是否不同?

从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:

(1)组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;

(2)组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。

而且:SS总=SS组间+SS组内 v总=v组间+v组内

如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。

3. 方差分析的应用条件

应用方差分析对资料进行统计推断之前应注意其使用条件,包括:

(1)可比性,若资料中各组均数本身不具可比性则不适用方差分析。

(2)正态性,即偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。

(3)方差齐性,即若组间方差不齐则不适用方差分析。多个方差的齐性检验可用Bartlett法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。

二、方差分析的主要内容
根据资料设计类型的不同,有以下两种方差分析的方法:

1. 对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。

2. 对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。

两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。整个方差分析的基本步骤如下:

(1) 建立检验假设;

H0:多个样本总体均数相等。

H1:多个样本总体均数不相等或不全等。

检验水准为0.05。

(2) 计算检验统计量F值;

(3) 确定P值并作出推断结果。

三、多个样本均数的两两比较
经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。

1. 多个样本均数间两两比较

多个样本均数间两两比较常用q检验的方法,即 Newman-kueuls法,其基本步骤为:

建立检验假设–>样本均数排序–>计算q值–>查q界值表判断结果。

2. 多个实验组与一个对照组均数间两两比较

多个实验组与一个对照组均数间两两比较,若目的是减小第II类错误,最好选用最小显著差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q’界值表。

转载请注明:数据分析 » 方差分析:组间离差平方和组内离差平方的定义是什么?

喜欢 (4)or分享 (0)