SPSS非正态分布数据转换为正态分布数据
关键词:非正态分布数据转换,数据转换为正态分布,spss 转换 正态分布,spss数据正态分布
我的数据不是正态分布,想做直线相关分析, 书上要求直线相关分析时双变量为正态分布,秩相关只能算出r,不能作图。我想做图,但是通过lg sina cos 对数等多种转换方法仍然不是正态分布, 后我在人大经济论坛找到别人的解答如下:先将原始分数的频数转化为相对累积频数(百分等级),将它视为正态分布的概率,然后通过查正态分布表中概率值相对应的Z值,将其转化为Z分数,达到正态化的目的。
在SPSS上的操作方法:工具栏transform-Rank cases,将左边你要进行正态化的变量拖入右边“变量”框中;点选rank types对话窗,选中normal scores选项(共四种计算方法,系统默认的是bloom计算方法,可根据你的需要进行改进),点击continue,ok。
spss会在数据观察表中生成两列新变量,其中N总分变量就是你想要的正态化结果。[img=324,259]file:///C:/Users/zzzz/AppData/Local/Temp/msohtml1/02/clip_image002.gif[/img]
按照他的方法,做出来的结果如下图 ,但是问题是我 给我老师看的时候,他说他从没看到是这样表示的, normal score of NT-proBNP usingBlom‘s Formula, 老师让我找找别人的文章是不是这样做的, 我没找到, 特向各位请教,看这个做出来的图可行不
SPSS非正态分布数据转换为正态分布数据—最佳答案:
可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布。常用的变量变换方法有对数变换、平方根变换、倒数变换、平方根反正玄变换等,应根据资料性质选择适当的变量变换方法。
1、对数变换 即将原始数据X的对数值作为新的分布数据:
X’=lgX
当原始数据中有小值及零时,亦可取X’=lg(X+1)
还可根据需要选用X’=lg(X+k)或X’=lg(k-X)
对数变换常用于(1)使服从对数正态分布的数据正态化。如环境中某些污染物的分布,人体中某些微量元素的分布等,可用对数正态分布改善其正态性。
(2)使数据达到方差齐性,特别是各样本的标准差与均数成比例或变异系数CV接近于一个常数时。
2、平方根变换 即将原始数据X的平方根作为新的分布数据。
X’=sqrt(X)
平方根变换常用于:
1)使服从Poission分布的计数资料或轻度偏态资料正态化,可用平方根变换使其正态化。2)当各样本的方差与均数呈正相关时,可使资料达到方差齐性。
3)倒数变换 即将原始数据X的倒数作为新的分析数据。
X’=1/X
常用于资料两端波动较大的资料,可使极端值的影响减小。
4、平方根反正旋变换 即将原始数据X的平方根反正玄值做为新的分析数据。
X’=sin-1sqrt(X)
常用于服从二项分布的率或百分比的资料。一般认为等总体率较小如<30%时或较大(如>70%时),偏离正态较为明显,通过样本率的平方根反正玄变换,可使资料接近正态分布,达到方差齐性的要求。
SPSS非正态分布数据转换为正态分布数据–其他答案:
spss的变量正态转换步骤:工具栏transform-Rank cases,将左边你要进行正态化的变量拖入右边“变量”框中;点选rank types对话窗,选中normal scores选项(共四种计算方法,系统默认的是bloom计算方法,可根据你的需要进行改进),点击continue,ok,此时spss页面上会生成两列新变量,第一个变量,N打头的那个就是正态化后的新变量。
SPSS非正态分布数据转换为正态分布数据–其他答案:
先将原始分数的频数转化为相对累积频数(百分等级),将它视为正态分布的概率,然后通过查正态分布表中概率值相对应的Z值,将其转化为Z分数,达到正态化的目的。
在SPSS上的操作方法:工具栏transform-Rank cases,将左边你要进行正态化的变量拖入右边“变量”框中;点选rank types对话窗,选中normal scores选项(共四种计算方法,系统默认的是bloom计算方法,可根据你的需要进行改进),点击continue,ok。
spss会在数据观察表中生成两列新变量,其中N总分变量就是你想要的正态化结果。
转载请注明:数据分析 » SPSS非正态分布数据转换为正态分布数据