请论述回归分析与相关分析的区别与联系。
答:回归分析与相关分析的区别:
(1)相关分析所研究的两个变量是对等关系,回归分析所研究的两个变量不是对等关系,必须根据研究目的确定其中的自变量、因变量。
(2)对于变量x与y来说,相关分析只能计算出一个反映两个变量间相关密切程度的相关系数,计算中改变x和y的地位不影响相关系数的数值。回归分析有时可以根据研究目的不同分别建立两个不同的回归方程。
(3)相关分析对资料的要求是,两个变量都是随机的,也可以是一个变量是随机的,另一个变量是非随机的。而回归分析对资料的要求是,自变量是可以控制的变量(给定的变量),因变量是随机变量。
(1)相关分析是回归分析的基础和前提。假若对所研究的客观现象不进行相关分析,直接作回归分析,则这样建立的回归方程往往没有实际意义。只有通过相关分析,确定客观现象之间确实存在数量上的依存关系,而且其关系值又不确定的条件下,再进行回归分析,在此基础上建立回归方程才有实际意义。
(2)回归分析是相关分析的深入和继续。对所研究现象只作相关分析,仅说明现象之间具有密切的相关关系是不够的,统计上研究现象之间具有相关关系的目的,就是要通过回归分析,将具有依存关系的变量间的不确定的数量关系加以确定,然后由已知自变量值推算未知因变量的值,只有这样,相关分析才具有实际意义。
回归分析法和相关分析法有什么区别?
相关分析,是看2个因素之间的相关性,也就是2个因素之间是否有关联; 如果计算出来是1,那么2个因素是完全正相关,如果是0,那么说明这2个因素完全不相关,如果是负数,那么说明2个因素是负相关。 打个比方,身高和脚的大小,相关性就会比较高一些,而身高和头发长度,那么基本上就是不相关的。如果我们知道一个人个子高,那么我们可以比较有把握的认为他脚大,但不会认为他头发长。 像俗话说,头发长见识短,那么在这句话里面,头发长度,和见识的多少就是负相关。 回归分析也是分析不同因素之间的关系,回归的类型很多,在多元回归分析的时候,一般也有涉及到相关性。 比如一个产品的客户满意度可能来自于性能、价格、包装、品牌等等不同的因素,那么我们可以对这些因素进行分析,通过软件分析之后一般会有一个项目F校验,这个会反映每个变量对于最终结果(因变量)的相关程度。通过F校验,我们可以把一些与结果相关性不叫弱的变量剔除。