两个变量与因变量相关性分析
关键词: 回归分析 多个因变量,主成分分析 因变量,两个因变量的回归分析
提问:用SPSS一个分析,有一个因变量和N个自变量,先做相关性发现有很多自变量与因变量有关,相关性也比较高.
继续说,但是再做多重回归方程的时候只有3个因变量入选,其他都被排除了,那在写文章的时候那些被排除了的有相关性的因变量该怎么处理呢?
这说明这些变量之间存在自相关,模型选择的是代表程度更高且自变量相互之间相关性低的自变量来,以保证自变量变化时,只影响因变量,而不影响其它模型中的自变量.
建议你对这些自变量做两两之间的相关性检验,以说明他们不适合同时存在于模型中.
追问:这个是所谓的共线性的问题么?那我做自变量两两之间的相关性检验,什么样的结果才能显示他们不适合同时出现在模型中呢?
追答:你进行自变量之间的相关性检验,结果就会出来他们之间的相关性很高。 至于具体到模型中,得看具体的情况了,我也没有经验值。但是建模的时候一定要选择合适的变量进入方式。
最佳答案:
1.多重共线性的概念:
所谓多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。一般来说,由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。
完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。
2.多重共线性产生的原因 主要有3各方面: (1)经济变量相关的共同趋势 (2)滞后变量的引入 (3)样本资料的限制 3多重共线性的解决方法
多重共线性的处理方法一般有如下的几种
1 增加样本容量,当线性重合是由于测量误差引起的以及他仅是偶然存在于原始样本,而不存在于总体时,通过增加样本容量可以减少或是避免线性重合,但是在现实的生活中,由于受到各种条件的限制增加样本容量有时又是不现实的
2剔除一些不重要的解释变量,主要有向前法和后退法,逐步回归法.
前进法的主要思想是变量由少到多的,每次增加一个,直至没有可引入的变量为止.具体做法是首先对一个因变量y和m个自变量分别建立回归方程,并分别计算这m个回归方程的F值,选其最大者,记为Fj,,给定显著性水平F,如果Fj>F,则变量引入该方程,再分别对(Xj,X1),(Xj,X2)…(Xj,Xm)做回归方程,并对他们进行F检验,选择最大的Fi值,如果Fi.>F,则该变量引入方程,重复上述步骤,直到没有变量引入为止.
后退法,是先用m个因变量建立回归方程,然后在这m个变量中选择一个最不显著的变量将它从方程中剔除,对m个回归系数进行F检验,记所求得的最小的
一个记为Fj,给定一个显著性的水平,如果Fj逐步回归法,前进法存在着这样的缺点当一个变量被引入方程时,这个变量就被保留在这个方程中了,当引入的变量导致其不显著时,它也不会被删除掉,后退法同样存在着这样的缺点,当一个变量被剔除时就永远的被排斥在方程以外了,而逐步回归法克除了两者的缺点.逐步回归的思想是有进有出.将变量一个一个的引入,每引入一个变量对后面的变量进行逐个检验,当变量由于后面变量的引入而不变的不显著时将其剔除,进行每一步都要进行显著性的检验,以保证每一个变量都是显著的.
理论上上面的三种方法都是针对不相关的的数据而言的,在多重共线性很严重的情况下,结论 的可靠性受到影响,在一些经济模型中,要求一些很重要变量必须包含在里面,这时如果贸然的删除就不符合现实的经济意义.
3.不相关的系数法.当变量之间存在着多重共线性最直接的表现就是各个解释变量之间的决定系数很大.考虑到两个变量之间的决定系数众所周知, 在多元线性回归模型中, 当各个解释变量( 如Xi 与Xj, i≠j) 之间存在着多重共线性时, 其最直接的表现就是各个解释变量之间的决定系数(ri2,j)很大.ri2,j 很大, 则意味着重要变量Xi( 在本文中, 为研究方便, 我们始终假定Xi 相对于Xj 而言, 是一重要变量, i≠j) 的变化能够说明Xj 的变化.如两者之间的r2,j=90%, 则我们以说, Xi 的变化说明了Xj 变化的90%,而剩余的( 1- ri2,j) 部分,则是由Xj 自身的变化说明的.由此决定, 在反映被解释变量(Y)与解释变量Xi,Xj 之间的关系时, 对于解释变量Xj 来说, 并不需要用全部的信息来解释被解释变量的问题, 而只需要用剩余的( 1- ri2,j) 部分的信息来解释就足够了,因为有ri2,j 部分的信息是与Xi 相重复的, 已由Xi 解释了.由此出发, 如果我们能够在保留重要变量(Xi) 全部信息的同时, 以重要变量(Xi) 为基础, 对其他的解释变量进行一定的线形变换, 使之转换为一个新变量, 如将Xj 转换为Xjj , 并且使得Xi 与新变量Xjj 之间的决定系数( ri2,jj) 降低到最小程度———如( 1- ri2,j) , 则就可以消除多重共线性.
转载请注明:数据分析 » 两个变量与因变量相关性分析_spss多变量相关性分析