大数据人才战报:十大数据分析职业趋势
与大数据概念知名度和企业热情形成对比的是:大数据正面临全球性的人才荒。企业对新型大数据分析和预测技术人才的热情和需求正在超过传统的商业智能和信息管理人才。
无论是数据分析的新手还是老鸟,都需要对大数据引发的数据分析职业革命做好充分的准备,以下是Information Week根据一次大数据企业应用调查总结的大数据分析职业十大趋势:
一、薪酬持续增长
BI、分析和信息管理专业人士的薪水过去三年增长速度超过行业平均水平,管理职务的薪水排名在IW的23个IT职业大类收入调查报告中排名高居第四。
二、大数据人才供不应求
根据麦肯锡报告,仅仅在美国市场,2018年大数据人才和高级分析专家的人才缺口将高达19万。此外美国企业还需要150万位能够提出正确问题、运用大数据分析结果的大数据相关管理人才。
三、企业寻求大数据外包
在信息周刊的大数据企业应用调查中,660家受访企业倾向外包其大数据工作。其中25%的企业表示愿意外包给美国或者海外企业;17%的企业表示仅会考虑外包给美国企业;22%的企业表示将完全离岸外包给海外企业。
四、大数据人才出现代沟
根据埃森哲分析总监Stacy Blanchard的报告,新老两代BI、数据分析和信息管理人才在理念上存在加大差异,年轻的新一代数据分析人才更加开放,倾向使用开源工具和云计算,热衷最新技术工具和认证,但是Blanchard也警告企业,这些年轻的数据人才对企业的忠诚度更低,而且更加敏感,对工作环境更加挑剔。“如果他们不能与其他员工很好地协作,他们将无法了解数据分析结果对整个企业业务的影响。”
五、数据分析人才需要更多培训
在信息周刊的调查显示BI、数据分析和信息管理人才认为技术培训、认证课程和统计/分析培训是最重要的三种培训课程选择。有趣的是,数据分析人才对财务、营销等商务技能课程的兴趣远高于其他IT专业人士。
六、数据专家更多担任业务角色
相比其他IT员工,BI、分析和信息管理专家承担非IT任务的可能性远高于其他IT员工。
七、企业需要大数据科学家
企业需要的数据人才大致分为几类,主要包括产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较新的领域。在安全和风险分析方面,数据科学家们知道需要收集哪些数据、如何进行快速分析,并最终通过分析信息来有效遏制网络入侵或抓住网络罪犯。参考阅读:企业需要什么样的数据科学家
八、教育界对大数据人才短缺做出回应
如今企业寻找一位懂R统计语言编程或mapReduce编程的人才非常困难,大多只能从Google、Yahoo和微软等公司挖人。但是美国的大学已经做出调整,包括卡内基梅隆大学、加州理工州立大学、加州大学伯克利分校等大学都纷纷推出了机器学习课程。
九、数据分析工作的职业满意度更高
相比其他IT员工,BI、分析和信息管理人才对职业的满意度更高,同时也面临更高的挑战。
十、传统数据分析人才面临转型
传统的BI和信息管理老兵薪水一般都很高,但是为了延长职业生涯,他们必须开始拥抱和学习面向未来的数据分析技能,包括大数据平台、非结构化信息管理、文本分析技术、高级分析等。
转载请注明:数据分析 » 大数据人才战报:十大数据分析职业趋势