本站分享:AI、大数据、数据分析师培训认证考试,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训

Hadoop中的各种排序_hadoop全局排序_hadoop二次排序

hadoop培训 cdadata 3853℃

Hadoop中的各种排序_hadoop全局排序_hadoop二次排序

1:shuffle阶段的排序(部分排序)

shuffle阶段的排序可以理解成两部分,一个是对spill进行分区时,由于一个分区包含多个key值,所以要对分区内的<key,value>按照key进行排序,即key值相同的一串<key,value>存放在一起,这样一个partition内按照key值整体有序了。

第二部分并不是排序,而是进行merge,merge有两次,一次是map端将多个spill 按照分区和分区内的key进行merge,形成一个大的文件。第二次merge是在reduce端,进入同一个reduce的多个map的输出 merge在一起,该merge理解起来有点复杂,最终不是形成一个大文件,而且期间数据在内存和磁盘上都有,关于这点金子准备日后单独整理一下。

所以shuffle阶段的merge并不是严格的排序意义,只是将多个整体有序的文件merge成一个大的文件,由于同的task执行,map的输出会有所不同,所以merge后的结果不是每次都相同,不过还是严格要求按照分区划分,同时每个分区内的具有相同key的<key,value>对挨在一起。

shuffle排序综述:如果只定义了map函数,没有定义reduce函数,那么输入数据经过shuffle的排序后,结果为key值相同的输出挨在一起,且key值小的一定在前面,这样整体来看key值有序(宏观意义的,不一定是按从大到小,因为如果采用默认的HashPartitioner,则key 的hash值相等的在一个分区,如果key为IntWritable的话,每个分区内的key会排序好的),而每个key对应的value不是有序的。

应用一:金子理解:shuffle的排序随不能满足全局排序,但是实际中还是帮助我们做了很多工作,比如我们只希望把<key,value>对按照key值,将相同key的<key,value>对输出到一起,这样shuffle排序就可以满足了,也就不需要reduce函数,只单独指定map函数就OK啦!

应用二:基于分区的MapFile查找技术。(我没仔细看)

2:全排序

对于全排序,金子深有体会,借助于hadoop的Terasort,我曾经写了整数和字符串的全排序,其中代码重叠率很高,只注意改改输入格式什么的就OK了。要进行全局排序,首先要理解分区的概念,并且要使用TotalOrderpartition(因为默认的partition是hashpartition,不适用于全局排序)。主要思路就是将数据按照区间进行分割,比如对整数排序,[0,10000]的在partiiton 0中,(10000,20000]在partition 1中。。。这样排序后面的partition中的数据肯定比排在前面的partition中的数要大,宏观上看是有序的,然后在对每个分区中的数据进行排序,由于这时分区中数据量已经比较小了,在进行排序就容易的多了。在数据分布均匀的情况下,每个分区内的数据量基本相同,这种就是比较理想的情况了,但是实际中数据往往分布不均匀,出现了数据倾斜的情况,这时按照之前的分区划分数据就不合适了,此时就需要一个东西的帮助——采样器。采样的核心思想是只查看一小部分键,获得键的近似分布,并由此键分区。关于采样器的一些使用细节,可以查看我的另一篇博客:Hadoop 中的采样器-不一样的视角 Hadoop中的采样器——不一样的视角

典型应用:TeraSort

3:二次排序

也称作辅助排序,MapReduce框架在把记录到达reducers之前会将记录按照键排序。对于任意一个特殊的键,然而,值是不排序的。甚至是,值在两次执行中的顺序是不一样的,原因是它们是从不同的map中来的,这些不同的map可能在不同的执行过程中结束的先后顺序不确定。通常情况下,大多数的MapReduce程序的reduce函数不会依赖于值的顺序。然而,我们也可通过以一种特殊的方式排序和分组键,来指定值的顺序。

二次排序金子并没有使用过,不过在join连接操作中,输入到一个reduce中的value<list>是来自两个表的,如果进行排序,将第一个表的放在前面,第二个表的放在后面,这样就只需要将表1存放到ArrayList中,表二不需要,然后进行全连接就搞定啦,这样是很多关于并行数据库的论文中对join操作的一个明显优化。

看到一篇写的很好的分析二次排序的博客:http://blog.sina.com.cn/s/blog_70324d8d0100wa63.html,讲的是日志分析中二次排序是怎么应用的。要写二次排序,则需要非常熟悉Jobconf的几个函数,以及各自相关的类:

A:setOutputKeyComparatorClass  :参数为继承RawComparator的子类

public void setOutputKeyComparatorClass(Class<? extends RawComparator> theClass)

RawComparator接口:继承自Comparator ,就是一个比较器,直接在代表对象特征的字节上进行操作。经常使用的其实现的类有:DoubleWritable.Comparator, FloatWritable.Comparator, IntWritable.Comparator,  LongWritable.Comparator, NullWritable.Comparator, SecondarySort.FirstGroupingComparator, SecondarySort.IntPair.Comparator,Text.Comparator,WritableComparator自定义的类要实现compare函数。以上这部分的代码就是对组合键中的key进行排序的意思。

很多的二次排序例子中就利用继承WritableComparator来实现根据组合键进行排序。即将compare中的两个参数转换为组合键,组合键中的自然键不同时按照自然键排序,自然键相同时按照自然值排序。可参见《权威指南》中p243的代码。

B:setPartitionerClass:用于指定用于分区的类,参数我继承Partitioner的类

public void setPartitionerClass(Class<? extends Partitioner> theClass)
Deprecated. 
Set the Partitioner class used to partition Mapper-outputs to be sent to the Reducers.
设置分区的类目的就是用于将map的输出按照指定的规则进行分区,每个分区进入不同的reduce,每个分区中按照自己程序的要求,可以有多个key值,如果一般的分区如Hashpartitioner 和TotalOrderPartitioner不能满足需求时,需要自定义继承Partitioner的类。

二次排序中由于map的输出key为组合键IntPair,所以自定义的分区类要继承Partitioner,同时函数getPartition 的返回值要根据组合键中的自然键,即key.first进行判断,例如return Math.abs(key.getFirst()*127)% numpartitions; 返回值相同的就被分配到一个分区中了。这样一个分区中有多个不同的自然键,但是reduce的输入要满足对于非组合键,就是单纯的一个自然键时,输入是 <key, value<list>>的形式,而现在全部都是<IntPair ,value><IntPair,value>….的形式,我们要将自然键相同的value放到一起,形成一个list,要怎么办呢,就要进行分组啦!!!分组也同样要用comparator,见下面C哦~

C:setOutputValueGroupingComparator:指定用户自定义的comparator,用于将reduce的输入进行分组,二次排序中可以理解为将自然键key相同的放到一起,相同key的value放到一个value迭代器里。

public void setOutputValueGroupingComparator(Class<? extends RawComparator> theClass)

二次排序工作原理综述:(转自:http://p-x1984.iteye.com/blog/800269)

在map阶段,使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现。Hadoop自带的例子SecondrySort使用TextInputFormat,他提供的RecordReder会将文本的一行的行号作为key,这一行的文本作为value。这就是自定义Map的输入是<LongWritable, Text>的原因。然后调用自定义Map的map方法,将一个个<LongWritable, Text>对输入给Map的map方法。注意输出应该符合自定义Map中定义的输出<IntPair, IntWritable>。最终是生成一个List<IntPair, IntWritable>。在map阶段的最后,会先调用job.setPartitionerClass对这个List进行分区,每个分区映射到一个reducer。每个分区内又调用job.setSortComparatorClass设置的key比较函数类排序。可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass设置key比较函数类,则使用key的实现的compareTo方法。在第一个例子中,使用了IntPair实现的compareTo方法,而在下一个例子中,专门定义了key比较函数类。

在reduce阶段,reducer接收到所有映射到这个reducer的map输出后,也是会调用job.setSortComparatorClass设置的key比较函数类对所有数据对排序。然后开始构造一个key对应的value迭代器。这时就要用到分组,使用job.setGroupingComparatorClass设置的分组函数类。只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。最后就是进入Reducer的reduce方法,reduce方法的输入是所有的(key和它的value迭代器)。同样注意输入与输出的类型必须与自定义的Reducer中声明的一致。

二次排序应用: 日志分析(转自:)
在计算visits的时候是一个很常见的需求。比如
原始日志为
用户标识为11111的 1点00 访问页面page1
用户标识为11111的 1点01 访问页面page2
用户标识为11111的 1点05 访问页面page3
用户标识为22222的 1点00 访问页面page1
用户标识为22222的 1点05 访问页面page3,

你需要统计结果为
用户11111 1:00的入口是 page1,出口是page3,访问3个页面,停留时间为5分钟
用户22222 1点00的入口是page1,出口是page3,访问2个页面,停留时间为5分钟
3 实步

实现简要步骤为
1. 构造(用户标识,时间)作为key, 时间和其他信息(比如访问页面)作为value,然后进入map流程
2. 在缺省的reduce的,传入参数为 单个key和value的集合,这会导致相同的用户标识和相同的时间被分在同一组,比如用户标识为11111的 1点00一个reduce, 用户标识为11111的 1点01另外一组,这不符合要求.所以需要更改缺省分组,需要由原来的按(用户标识,时间)改成按(用户标识)分组就行了。这样reduce是传入参数变为
户标识为11111 的value集合为(1点00 访问页面page1, 1点01 访问页面page2, 1点05 访问页面page3),然后在reduce方法里写自己的统计逻辑就行了。
3. 当然1和2步之间,有2个重要细节要处理:确定key的排序规则和确定分区规则(分区规则保证map后分配数据到reduce按照用户标识来散列,而不是按缺省的用户标识+时间来散列)

1:shuffle阶段的排序(部分排序)

shuffle阶段的排序可以理解成两部分,一个是对spill进行分区时,由于一个分区包含多个key值,所以要对分区内的<key,value>按照key进行排序,即key值相同的一串<key,value>存放在一起,这样一个partition内按照key值整体有序了。

第二部分并不是排序,而是进行merge,merge有两次,一次是map端将多个spill 按照分区和分区内的key进行merge,形成一个大的文件。第二次merge是在reduce端,进入同一个reduce的多个map的输出 merge在一起,该merge理解起来有点复杂,最终不是形成一个大文件,而且期间数据在内存和磁盘上都有,关于这点金子准备日后单独整理一下。

所以shuffle阶段的merge并不是严格的排序意义,只是将多个整体有序的文件merge成一个大的文件,由于同的task执行,map的输出会有所不同,所以merge后的结果不是每次都相同,不过还是严格要求按照分区划分,同时每个分区内的具有相同key的<key,value>对挨在一起。

shuffle排序综述:如果只定义了map函数,没有定义reduce函数,那么输入数据经过shuffle的排序后,结果为key值相同的输出挨在一起,且key值小的一定在前面,这样整体来看key值有序(宏观意义的,不一定是按从大到小,因为如果采用默认的HashPartitioner,则key 的hash值相等的在一个分区,如果key为IntWritable的话,每个分区内的key会排序好的),而每个key对应的value不是有序的。

应用一:金子理解:shuffle的排序随不能满足全局排序,但是实际中还是帮助我们做了很多工作,比如我们只希望把<key,value>对按照key值,将相同key的<key,value>对输出到一起,这样shuffle排序就可以满足了,也就不需要reduce函数,只单独指定map函数就OK啦!

应用二:基于分区的MapFile查找技术。(我没仔细看)

2:全排序

对于全排序,金子深有体会,借助于hadoop的Terasort,我曾经写了整数和字符串的全排序,其中代码重叠率很高,只注意改改输入格式什么的就OK了。要进行全局排序,首先要理解分区的概念,并且要使用TotalOrderpartition(因为默认的partition是hashpartition,不适用于全局排序)。主要思路就是将数据按照区间进行分割,比如对整数排序,[0,10000]的在partiiton 0中,(10000,20000]在partition 1中。。。这样排序后面的partition中的数据肯定比排在前面的partition中的数要大,宏观上看是有序的,然后在对每个分区中的数据进行排序,由于这时分区中数据量已经比较小了,在进行排序就容易的多了。在数据分布均匀的情况下,每个分区内的数据量基本相同,这种就是比较理想的情况了,但是实际中数据往往分布不均匀,出现了数据倾斜的情况,这时按照之前的分区划分数据就不合适了,此时就需要一个东西的帮助——采样器。采样的核心思想是只查看一小部分键,获得键的近似分布,并由此键分区。关于采样器的一些使用细节,可以查看我的另一篇博客:Hadoop 中的采样器-不一样的视角 Hadoop中的采样器——不一样的视角

典型应用:TeraSort

3:二次排序

也称作辅助排序,MapReduce框架在把记录到达reducers之前会将记录按照键排序。对于任意一个特殊的键,然而,值是不排序的。甚至是,值在两次执行中的顺序是不一样的,原因是它们是从不同的map中来的,这些不同的map可能在不同的执行过程中结束的先后顺序不确定。通常情况下,大多数的MapReduce程序的reduce函数不会依赖于值的顺序。然而,我们也可通过以一种特殊的方式排序和分组键,来指定值的顺序。

二次排序金子并没有使用过,不过在join连接操作中,输入到一个reduce中的value<list>是来自两个表的,如果进行排序,将第一个表的放在前面,第二个表的放在后面,这样就只需要将表1存放到ArrayList中,表二不需要,然后进行全连接就搞定啦,这样是很多关于并行数据库的论文中对join操作的一个明显优化。

看到一篇写的很好的分析二次排序的博客:http://blog.sina.com.cn/s/blog_70324d8d0100wa63.html,讲的是日志分析中二次排序是怎么应用的。要写二次排序,则需要非常熟悉Jobconf的几个函数,以及各自相关的类:

A:setOutputKeyComparatorClass  :参数为继承RawComparator的子类

public void setOutputKeyComparatorClass(Class<? extends RawComparator> theClass)

RawComparator接口:继承自Comparator ,就是一个比较器,直接在代表对象特征的字节上进行操作。经常使用的其实现的类有:DoubleWritable.Comparator, FloatWritable.Comparator, IntWritable.Comparator,  LongWritable.Comparator, NullWritable.Comparator, SecondarySort.FirstGroupingComparator, SecondarySort.IntPair.Comparator,Text.Comparator,WritableComparator自定义的类要实现compare函数。以上这部分的代码就是对组合键中的key进行排序的意思。

很多的二次排序例子中就利用继承WritableComparator来实现根据组合键进行排序。即将compare中的两个参数转换为组合键,组合键中的自然键不同时按照自然键排序,自然键相同时按照自然值排序。可参见《权威指南》中p243的代码。

B:setPartitionerClass:用于指定用于分区的类,参数我继承Partitioner的类

public void setPartitionerClass(Class<? extends Partitioner> theClass)
Deprecated. 
Set the Partitioner class used to partition Mapper-outputs to be sent to the Reducers.
设置分区的类目的就是用于将map的输出按照指定的规则进行分区,每个分区进入不同的reduce,每个分区中按照自己程序的要求,可以有多个key值,如果一般的分区如Hashpartitioner 和TotalOrderPartitioner不能满足需求时,需要自定义继承Partitioner的类。

二次排序中由于map的输出key为组合键IntPair,所以自定义的分区类要继承Partitioner,同时函数getPartition 的返回值要根据组合键中的自然键,即key.first进行判断,例如return Math.abs(key.getFirst()*127)% numpartitions; 返回值相同的就被分配到一个分区中了。这样一个分区中有多个不同的自然键,但是reduce的输入要满足对于非组合键,就是单纯的一个自然键时,输入是 <key, value<list>>的形式,而现在全部都是<IntPair ,value><IntPair,value>….的形式,我们要将自然键相同的value放到一起,形成一个list,要怎么办呢,就要进行分组啦!!!分组也同样要用comparator,见下面C哦~

C:setOutputValueGroupingComparator:指定用户自定义的comparator,用于将reduce的输入进行分组,二次排序中可以理解为将自然键key相同的放到一起,相同key的value放到一个value迭代器里。

public void setOutputValueGroupingComparator(Class<? extends RawComparator> theClass)

二次排序工作原理综述:(转自:http://p-x1984.iteye.com/blog/800269)

在map阶段,使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现。Hadoop自带的例子SecondrySort使用TextInputFormat,他提供的RecordReder会将文本的一行的行号作为key,这一行的文本作为value。这就是自定义Map的输入是<LongWritable, Text>的原因。然后调用自定义Map的map方法,将一个个<LongWritable, Text>对输入给Map的map方法。注意输出应该符合自定义Map中定义的输出<IntPair, IntWritable>。最终是生成一个List<IntPair, IntWritable>。在map阶段的最后,会先调用job.setPartitionerClass对这个List进行分区,每个分区映射到一个reducer。每个分区内又调用job.setSortComparatorClass设置的key比较函数类排序。可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass设置key比较函数类,则使用key的实现的compareTo方法。在第一个例子中,使用了IntPair实现的compareTo方法,而在下一个例子中,专门定义了key比较函数类。

在reduce阶段,reducer接收到所有映射到这个reducer的map输出后,也是会调用job.setSortComparatorClass设置的key比较函数类对所有数据对排序。然后开始构造一个key对应的value迭代器。这时就要用到分组,使用job.setGroupingComparatorClass设置的分组函数类。只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。最后就是进入Reducer的reduce方法,reduce方法的输入是所有的(key和它的value迭代器)。同样注意输入与输出的类型必须与自定义的Reducer中声明的一致。

二次排序应用: 日志分析(转自:)
在计算visits的时候是一个很常见的需求。比如
原始日志为
用户标识为11111的 1点00 访问页面page1
用户标识为11111的 1点01 访问页面page2
用户标识为11111的 1点05 访问页面page3
用户标识为22222的 1点00 访问页面page1
用户标识为22222的 1点05 访问页面page3,

你需要统计结果为
用户11111 1:00的入口是 page1,出口是page3,访问3个页面,停留时间为5分钟
用户22222 1点00的入口是page1,出口是page3,访问2个页面,停留时间为5分钟
3 实步

实现简要步骤为
1. 构造(用户标识,时间)作为key, 时间和其他信息(比如访问页面)作为value,然后进入map流程
2. 在缺省的reduce的,传入参数为 单个key和value的集合,这会导致相同的用户标识和相同的时间被分在同一组,比如用户标识为11111的 1点00一个reduce, 用户标识为11111的 1点01另外一组,这不符合要求.所以需要更改缺省分组,需要由原来的按(用户标识,时间)改成按(用户标识)分组就行了。这样reduce是传入参数变为
户标识为11111 的value集合为(1点00 访问页面page1, 1点01 访问页面page2, 1点05 访问页面page3),然后在reduce方法里写自己的统计逻辑就行了。
3. 当然1和2步之间,有2个重要细节要处理:确定key的排序规则和确定分区规则(分区规则保证map后分配数据到reduce按照用户标识来散列,而不是按缺省的用户标识+时间来散列)来

转载请注明:数据分析 » Hadoop中的各种排序_hadoop全局排序_hadoop二次排序

喜欢 (0)or分享 (0)