沈浩老师谈如何学好数据挖掘
下面是一位朋友的问题,其实每天都有不少同学和朋友向我提问各种学习数据分析、数据挖掘、统计分析等方面的问题,有时候真的很难仔细回答。其实,每个人都有自己的学习路径,还有自己的知识结构和期望的职业生涯,要得到一个统一的答案是困难的!
什么是解决问题:就是在明确实际情况和期望情况之间的差异后,为消除这种差异所采取的行动!在解决具体问题时,要先明确分类问题、差异问题,最后我们才能谈论共性!
我期望解答这个朋友问题可能具有共性,放在博客中,一些见解仅供大家参考:
沈浩老师:
您好!不知道您还记得我不,我是电信的一名新入职员工,在过年前给您写过一封E-mail.我期望自己能够在企业内从事跟数据挖掘的工作,期望通过数据挖掘这个工具来挖掘用户深层次的需求和研究用户的使用习惯及消费特点。
- 数量统计知识方面:我认为统计思想是数学在实践中最重要的体现,但对于实际工作者最重要的是掌握统计思想,其实统计理论非常复杂,但实际应用往往是比较简单的!比如,很多人都在大学学了假设检验,但实际应用中假设就是看P值是否小于0.05,但是H0是什么?拒绝还是接受的是什么现实问题;要理解!
- 掌握软件问题:从软件角度学,是非常好的思路,我基本上就是这样学的。我常说编软件的人最懂理论,否则编不出来,编软件的人最知道应用,否则软件买不出去;现在软件越来越友好,把软件自带案例做一遍,你会自觉不自觉的掌握软件解决问题的思路和能解决的问题类型;
- 数据仓库问题:OLAP和数据挖掘是数据仓库建立基础上的两个增值应用,从企业整体角度,数据挖掘应该建立在企业数据仓库完备的基础上。所以说数据仓库是针对企业级数据挖掘应用提出的,但我们应该记住,企业从来不是为了数据挖掘建立数据仓库,而是因为有了数据仓库后必然会提出数据挖掘的需求!现在随着数据挖掘软件的工具智能化,以及数据仓库和ETL工具的接口友好,对数据库层面的要求越来越少;
- 数学不好可能反应了一个人思考问题的方式或深入理解问题的能力,但数学不是工具是脑具,不断解决问题的过程可以让我们思考问题更数学化!
沈浩老师建议:
- 不急,一步一步来!先把本职工作中的数据分析问题理解了,干好了!
- 熟练玩好Excel软件工具,这个可以看《Excel高级应用与数据分析》我写的书,当然有很多Excel论坛和网站,从我的博客就可以连接到。
- 学习好统计分析方法,我不是单指统计原理,而是统计分析方法,比如回归分析,因子分析等,不断进入统计分析解决问题的思考方式;这个可以看看SPSS软件方面的书和数据案例,通过软件学习解决数据分析的统计问题,这方面的书很多,当然你也可以关注我的博客,不断增加统计分析方法解决数据分析问题的思路,自己对照着完成!
- 在上述问题有了比较好的理解后,也就是你应该算是一个数据分析能手的时候,开始进入数据挖掘领域,你会发现用数据挖掘思想解决问题具有智能化、自动化的优势,接下来,你需要考虑数据建模的过程,通过学习Clementine软件或SAS的挖掘工具,不断理解数据挖掘与原来的数据分析工具有什么不同或优势!
- 当前面都是了解并且能够得心应手后,你就要有针对性的掌握你工作所在行业的问题,例如:电信行业的解决方案问题:客户流失、客户价值、客户离网、客户保持、客户响应、客户交叉销售等商业模型,同时与数据分析和数据挖掘统一在一起的解决方案!
- 接下来,你应该掌握数据库的一些原理和操作,特别是SQL语言的方式
- 你到了这个阶段,就应该有全面解决问题的能力,比如挖掘出来的知识或商业规则如何推送到营销平台上等等
- 梳理自己的知识结构,不仅会操作,现在你应该成为专家了,要能够宣扬你的知识能力和领导力,当然也要表明你在数据挖掘领域的专业特长
- 要经常帮助同事和行业朋友,比如帮助解决数据分析问题,帮助咨询,甚至给大家讲课,这对你的知识梳理和能力的提高非常重要,你的自信心会更强!
- 有兴趣,可以建立一个博客或什么,不断写点东西,经常思考和总结
- 结交广泛的朋友!
关于入门的教材:
- 互联网,其实不用买什么书网络基本都有;要有好的搜索能力,当然包括搜各种软件!
- SPSS和Clementine软件的说明和案例,都做一遍;
- 《数据挖掘——客户关系管理的艺术》不错,当当网上查一下
- 《调查研究中的统计分析法》——我和柯老师写的,当当网也有
- 《Excel高级应用与数据分析》——我写的
- 《数据展现的艺术》——我和博易智讯合作
转载请注明:数据分析 » 沈浩老师谈如何学好数据挖掘_数据分析师推荐