Mike Jude:从本质上来说,大数据就是曾经被称为数据仓库的逻辑延伸。顾名思义,大数据就是一个大型的数据仓库,一般有一个能支持业务决策的业务重点。但是,它和传统数据库不同的是,大数据不用构建。
在典型的数据库中,数据会被组织成标准的字段,并使用特定的密钥索引。如果你熟悉Microsoft Access应用程序,那么你就能完全理解这个概念。比如,一个顾客记录可以由姓氏、名字、地址和其它信息组成有通用标签的字段。每个顾客记录样式都是相同的,这样可以通过使用搜索关键词来检索,比如搜索姓氏。
现在,如果你想链接到这些客户记录需要怎么做?链接到客户的图片或者视频呢?如果是链接到客户的所有记录呢?
将这么多不同的数据源互相映射,一般的数据库还做不到。另外,需要链接的数据量是非常巨大的。这就产生了“大数据”的概念。大数据使用特殊的数据结构来组织和访问巨大数量的数据,可能达到多个艾字节的范围。一般情况下,这需要跨多个服务器和离散数据存储进行并行计算,而小企业往往难以维持这种大数据的存储库。但是,大数据正逐渐成为云服务提供商能提供的一种服务,从而把大数据应用推向更多的公司。
但是,还有一个“大”问题,就是我们为什么需要大数据?答案就是相关性的价值。如果你能看到乍一看似乎没什么关系的数据设置之间的关系,你会获取很多重要信息。比如你想知道你的公司是不是容易被黑客利用。那么你需要跨多个应用程序和数据中心检查无数条交易。这时如果没有大数据技术和相关的分析技术,这几乎是不可能完成的。
最终,随着数据量的增长、业务的可用性和重要性的增加,大数据的定义可能会用来描述大多数数据库应用。IT专业人士应该掌握大数据相关概念和术语,以免遇到困难。
转载请注明:数据分析 » 大数据到底是什么?我们为什么需要大数据技术?